
DR. NICOL ECE498 FINAL PROJECT 1

Blackbox Analysis of Shuffle Algorithms
Michael McQuinn, Eric W. Davis Rozier

{mmcquinn, ewdr}@crhc.uiuc.edu

I. I NTRODUCTION

Over the past three decades, music players have trans-

formed from record players to Walkmans to Discmans

to MP3 players. While this has happened, the amount

of storage any one player could hold has grown tremen-

dously from a single album to hundreds of albums. This

fact alone has greatly altered how people access music.

Because of the continual increase in music storage

capabilities on portable music players, much innovation

has also occurred in this area. For example, user inter-

faces have increased in complexity from simple buttons

to advanced touch screens on the current iPod Mini.

Similarly, displays have changed from LEDs to multi-

line color displays.

A. Motivation

A growing problem with the increased storage capa-

bility is simply how users select which songs they would

like to hear. No longer is a simple forward or backward

button sufficient. Instead, users need the ability to easily

and dynamically create playlists. Devices must become

smarter and better understand the preferences of the

users. One method to combat the problem of selection

is to use random playlists. The idea is that if a playlist

is truly random, then the user will get a good ”mix” of

songs on a playlist and not need to manually select the

next song each time.

Due to limited processing power and battery usage,

sometime it is not practical to implement a fully psuedo-

random number generator but instead use an approxi-

mating technique. When this happens, permutations of

playlists can be lost or correlations between permutations

can form. Our motivation for this work is to better

understand the necessarily limited random number gen-

erators behind the most popular MP3 players of today.

Also, we would like to develop an accurate Quality of

Service (QoS) metric to determine how likely a shuffling

algorithm will appear random to a user. This will enable

us to more accurately analyze and compare the shuffling

algorithms between different players.

More importantly, we would also like to analyze the

utility of the randomness in a QoS fashion. A truly

random stream, if it allows repeated songs, might be

less optimal than an almost truly random stream which

does not allow repeats.

II. DATA GATHERING

In order to analyze the shuffle algorithms, we must

be able to efficiently gather playlist data. To do this, we

designed an automated system to generate Dual Tone

Multi Frequency (DTMF) songs which are loaded on the

players and recognized by a PC running the multimon

software package. [1] The data from multimon is then

parsed into permutations, which are analyzed by the tests

in Section III.

DR. NICOL ECE498 FINAL PROJECT 2

A. Tone Generation

Using the multimon programgen, we generated

10,000 unique songs consisting of a preamble, song

number, and delimeter. See Figure 1. The unique song

number represents one of songs on a MP3 players, while

the preamble and delimeter help us parse the multimon

output and regenerate the playlist.

Since all major portable audio players support dif-

ferent formats, we chose MP3 as the standard since

currently they all support MP3 playback as a sort of

defacto standard. Because of this, we converted all the

DTMF songs to MP3s usingsox and lame as seen in

Figure 2.

Fig. 1. Generated Tones Format

Fig. 2. Generation of a file f1.mp3

B. Tone Recognition

Once the songs have been generated, they are loaded

onto the players by different means depending on the

model:

• iRiver: By directly copying files onto the hard drive

• iPod Mini: Using iTunes for Windows XP [2] to

load files

• iPod Shuffle: Using iTunes for Windows XP [2] to

load files

For each test we ran, we reset completely the hard

drive of each player and reloaded them with only the

songs needed for that particular test. This helps reduce

outside sources of error in our analysis, including effects

of play count or rating. See Section?? for information

regarding Future Work on this subject.

Fig. 3. Process Overview for tone recognition

III. T ESTING

In order to analyze the data generated by our MP3

players we conducted two primary tests. The first test

was a test for the uniformity of the distribution of

permutations, and the second was a test to see the level

of autocorrelation between the permutations.

A. Test of Uniformity

To test the uniformity of the distribution of permuta-

tions we used the Kolmogorov-Smirnov [3] test, com-

paring the cumulative distribution of probability mass of

the data with that of a uniform distribution. Ideally any

given permutation will be equally as likely as any other,

so that the player does not favor one randomization over

another.

B. Test for Autocorrelation

Additionally we tested for independence in the se-

quence of permutations by calculation the lag1 through

lag10 autocorrelations [4]. This statistic should give us a

feeling for any bias in the players that may cause certain

patterns of permutations to occur more often than others.

DR. NICOL ECE498 FINAL PROJECT 3

C. Quality of Service

While we were unable to gather sufficient data, nor

to devise a Quality of Service metric which we found

fully suitable, initially we thought of testing for the

average minimum distance between two songs in the

same album. The idea being that perhaps within a given

playlist their might be some bias towards a particular

album, or dependence in the subsequent choices of which

song to play next given the current song is from a

given album. This method and our thoughts are contained

within Section VI

IV. RESULTS

A. iPod mini

We were able to collect a trace of 2180 complete

permutations from the iPod before the battery died.

Using this data we conducted a Kolmogorov-Smirnov

test for uniformity. Figure 4 shows a histogram detailing

the number of incidences of each permutation in our

trace. The iPod had full coverage of all 120 possible

permutations of five songs. The calculated test valueD

was found to be

D = 0.0214

for the iPod, thus we fail to reject our null hypothesis

H0 and conclude that we cannot detect a significant

difference between our data and the uniform distribution.

Figure 5 shows both the distribution of permutations in

our data, and the ideal uniform distribution.

Testing for significant lag1 through lag10 autocorrela-

tion for the trace collected from the iPod revealed only

one case where the null hypothesis of independance was

rejected. That case was the lag8 autocorrelation with

starting point zero. For this test

Z0 = −2.036241

 5

 10

 15

 20

 25

 30

 35

 0 20 40 60 80 100 120

C
ou

nt

Permutation Number

Histogram of Permutations

Fig. 4. Frequency of Permutations for iPod

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Permutation Number

CDF of Permutations

MP3 Player
Discretized Uniform

Fig. 5. CDF of iPod compared to Discretized Uniform for K-S Test

. Given our critical value

z0.025 = 1.96

we must reject the null hypothesis for independance in

this case.

The iPod mini is in fact so faithful to avoiding

autocorrelation that in several cases due to the random

pairing of two permutations the last song played for

one permutation in the trace is the same as the first

song played in the next permutation in the trace. During

analysis we counted the number of times this occured,

finding 429 separate cases of such behavior.

DR. NICOL ECE498 FINAL PROJECT 4

B. iPod Shuffle

A total of 2533 randomly generated permutations were

generated for the iPod Shuffle before the battery died.

Using this data we conducted a Kolmogorov-Smirnov

test for uniformity. Figure 6 shows a histogram detailing

the number of incidences of each permutation in our

trace. The iPod Shuffle did not have full coverage of all

possible permutations only exhibiting incidences of 24

of the possible 120 permutations.

The calculated test valueD was found to be

D = 0.162

for the iPod Shuffle, thus we reject our null hypothesis

H0 and conclude that there is a significant difference

between our data and the uniform distribution. Figure 7

shows both the distribution of permutations in our data,

and the ideal uniform distribution.

Of the 24 permutations we found in our trace, all

ended in the second song. Comparing this data to some

preliminary traces we collected using five song playlists

and the iPod shuffle we found that it appears to be the

case that for a playlist of sizeN , the iPod shuffle first

generates a purely random shuffle and for subsequent

playlists only shuffles the firstN −1 songs ensuring the

last song is never played twice in a row. More data is

needed to further test this hypothesis. This could be an

attempt to solve the problem found in the iPod mini

which causes the same song to sometimes be played

twice.

Testing for significant lag1 through lag10 autocorrela-

tion for the trace collected from the iPod Shuffle revealed

many cases for each lagx where the null hypothesis of

independence was rejected. This was most likely due in

part to the incomplete coverage of our permutation space

by the iPod Shuffle.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 20 40 60 80 100 120

C
ou

nt

Permutation Number

Histogram of Permutations

Fig. 6. Frequency of Permutations for iShuffle

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Permutation Number

CDF of Permutations

MP3 Player
Discretized Uniform

Fig. 7. CDF of iShuffle compared to Discretized Uniform for K-S

Test

The test results for these cases are ommitted for

brevity but a summary is given in Figure 8.

Having realized these facts about the iPod Shuffle’s

algorithm we ran the tests for uniformity again, this

time comparing only the explored state space of the

permutations. Figure 9 shows a histogram detailing the

number of incidences of each permutation in our trace.

The iPod Shuffle had full covereage of all 24 possible

permutations.

The calculated test valueD was found to be

D = 0.176

for the iPod Shuffle, given the critical value of0.249031

DR. NICOL ECE498 FINAL PROJECT 5

Lag1 Autocorrelation 1/1 cases

Lag2 Autocorrelation 2/2 cases

Lag3 Autocorrelation 3/3 cases

Lag4 Autocorrelation 4/4 cases

Lag5 Autocorrelation 4/5 cases

Lag6 Autocorrelation 5/6 cases

Lag7 Autocorrelation 5/7 cases

Lag8 Autocorrelation 7/8 cases

Lag9 Autocorrelation 8/9 cases

Lag10 Autocorrelation 5/10 cases

Fig. 8. Summary of iPod Shuffle autocorrelation results.

for a sample size of 24 we fail to reject our null hypoth-

esisH0 and conclude that we cannot detect a significant

difference between our data and the uniform distribution.

Figure 10 shows both the distribution of permutations in

our data, and the ideal uniform distribution.

 70

 80

 90

 100

 110

 120

 130

 140

 150

 160

 0 5 10 15 20 25

C
ou

nt

Permutation Number

Histogram of Permutations

Fig. 9. Frequency of Permutations for iShuffle

C. iRiver

Data was collected in the form of 87 randomly

generated permutations for the iRiver before it be-

came obvious that the generation of permutations was

done deterministically. Using this data we conducted

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Permutation Number

CDF of Permutations

MP3 Player
Discretized Uniform

Fig. 10. CDF of iShuffle compared to Discretized Uniform for K-S

Test

a Kolmogorov-Smirnov test for uniformity. Figure 11

shows a histogram detailing the number of incidences of

each permutation in our trace. The iRiver did not have

full coverage of all possible permutations only exhibiting

incidences of 3 of the possible 120 permutations.

The calculated test valueD was found to be

D = 0.825

for the iRiver, thus we reject our null hypothesisH0 and

conclude that there is a significant difference between

our data and the uniform distribution. Figure 12 shows

both the distribution of permutations in our data, and the

ideal uniform distribution.

By observing the iRiver’s behavior and collecting

playlists of maximal size we were able to determine the

algorithm by which the iRiver creates a playlist of a

given sizeN , and thus explain why only three playlists

are observed in our data. The iRiver stores internally four

shuffled playlists of size 10,000 songs. In order to extract

a playlist of abitrary sizeN the iRiver simply selects all

songs in a given maximal playlistPx which are also in

the playlist of sizeN and plays them in the order they

are found in playlistPx. Thus eachPx, 1 ≤ x ≤ 4 maps

to a playlistPN,x. In the case of five songs the mapping

DR. NICOL ECE498 FINAL PROJECT 6

P1 → P5,1 is identical to the mappingP4 → P5,4

producing the same playlist:

(1, 4, 5, 3, 2)

Although the number of permutations seems a bit low,

it is worthwhile to note that as the iRiver always starts

with the same song, thus eliminating the problem of

playing the same song twice which occurs when using

the iPod mini. While this may not be the optimal solution

for the problem at hand, given that for small playlists like

those presented her, a user is apt to start to realize he

or she always hears the same song first, and only hears

three unique orderings of the songs.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 20 40 60 80 100 120

C
ou

nt

Permutation Number

Histogram of Permutations

Fig. 11. Frequency of Permutations for iRiver

Testing for significant lag1 through lag10 autocorre-

lation for the trace collected from the iRiver revealed

significant levels of autocorrelation in each and every

possible case. This is far from surprising consider-

ing that the permutations were chosen deterministically

and played in the same order over and over again:

P5,1, P5,2, P5,3, P5,4, P5,1, P5,2, P5,3, P5,4, . . .

V. CONCLUSIONS

While the iPod mini was the only player which

generated a uniform and complete coverage of the entire

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Permutation Number

CDF of Permutations

MP3 Player
Discretized Uniform

Fig. 12. CDF of iRiver compared to Discretized Uniform for K-S

Test

permutation space, it was also the only player to suffer

from the possibility of song repetition. Given that the

iPod mini we tested was released before the iPod Shuffle,

it is quite possible that Apple has since changed it’s

algorithm to the one utilized by the iPod Shuffle in

response to complaints about repeated songs. Such an

incident would probably only have to happen once before

a typical user would begin complaining about QoS

delivered by the product.

The iPod Shuffle comes in second in overall random-

ness of it’s algorithm. While it does not have complete

coverage of the 120 permutations of five songs.

VI. FUTURE WORK

Although this work shows interesting results about

some of the most popular MP3 players on the market,

it is lacking in many ways. Because of this, we plan to

do much work in the future to help better understand the

shuffling capabilities of these players. Much of the future

work encompasses understanding the interworkings of

the iPod Shuffle and iPod Mini, but some work is needed

to better understand the iRiver as well.

• Determining an accurate and fitting Quality of Ser-

vice metric for shuffling

DR. NICOL ECE498 FINAL PROJECT 7

• Predictive analysis to prove we can generate an

iRiver playlist of any size

• Determining the best set of permutations for the

iRiver according to our QOS metric

• Determining whether play count or rating affects

the permutation uniformity for the iPod Shuffle and

iPod Mini

• Verify and understand why the iPod Shuffle only

generates (n-1) permutations of shuffles, where n is

the size of the play list.

• Perform more experiments with different play list

size to guide understanding of the shuffling algo-

rithms

• Determine whether the iTunes playcount and user

rating affects the shuffling permutations for the iPod

Shuffle and iPod Mini

VII. A CKNOWLEDGEMENTS

Thanks to:

• Michael Ihde (ihde@crhc.uiuc.edu) for much help

with setting up the multimon software packages and

general enthusiams for doing cool things.

REFERENCES

[1] T. Sailer. Linux radio transmission decoder. [Online].Available:

http://www.baycom.org/ tom/ham/linux/multimon.html

[2] A. Corporation. [Online]. Available: http://www.apple.com/itunes/

[3] W. D. K. A. M. Law, Simulation Modeling and Analysis. Burr

Ridge, Illinois: McGraw Hill, 2005.

[4] B. L. N. J. Banks, J. S. Carson and D. Nicol,Discrete-Event System

Simulation. Upper Saddle River, New Jersey 07458: Prentice Hall,

2005.

